Prüfer Conditions in Commutative Rings
نویسندگان
چکیده
This article explores several extensions of the Prüfer domain notion to rings with zero divisors. These extensions include semihereditary rings, rings with weak global dimension less than or equal to 1, arithmetical rings, Gaussian rings, locally Prüfer rings, strongly Prüfer rings, and Prüfer rings. The renewed interest in these properties, due to their connection to Kaplansky’s Conjecture, has resulted in a large body of results shedding new light on the area. We survey the work done in this direction in the last 15 years, including results, examples and counterexamples, and a multitude of open problems.
منابع مشابه
Some Properties of the Nil-Graphs of Ideals of Commutative Rings
Let R be a commutative ring with identity and Nil(R) be the set of nilpotent elements of R. The nil-graph of ideals of R is defined as the graph AG_N(R) whose vertex set is {I:(0)and there exists a non-trivial ideal such that and two distinct vertices and are adjacent if and only if . Here, we study conditions under which is complete or bipartite. Also, the independence number of is deter...
متن کاملOn the commuting graph of non-commutative rings of order $p^nq$
Let $R$ be a non-commutative ring with unity. The commuting graph of $R$ denoted by $Gamma(R)$, is a graph with vertex set $RZ(R)$ and two vertices $a$ and $b$ are adjacent iff $ab=ba$. In this paper, we consider the commuting graph of non-commutative rings of order pq and $p^2q$ with Z(R) = 0 and non-commutative rings with unity of order $p^3q$. It is proved that $C_R(a)$ is a commutative ring...
متن کاملPrüfer Conditions in Rings with Zero- Divisors
In his article: “Untersuchungen über die Teilbarkeitseigenschaften in Körpern” J. Reine Angew. Math. 168, 1 36, 1932 [21], Heinz Prüfer introduced a new class of integral domains, namely those domains R in which all finitely generated ideals are invertible. He also proved that to verify this condition, it suffices to check that it holds for all two-generated ideals of R. This was the modest beg...
متن کاملOn zero-divisor graphs of quotient rings and complemented zero-divisor graphs
For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...
متن کاملOn Commutative Reduced Baer Rings
It is shown that a commutative reduced ring R is a Baer ring if and only if it is a CS-ring; if and only if every dense subset of Spec (R) containing Max (R) is an extremally disconnected space; if and only if every non-zero ideal of R is essential in a principal ideal generated by an idempotent.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011